您正在查看: C 分类下的文章

3. 基于UDP协议的网络程序

3. 基于UDP协议的网络程序

下图是典型的UDP客户端/服务器通讯过程(该图出自[UNPv13e])。

图 37.3. UDP通讯流程


以下是简单的UDP服务器和客户端程序。

/* server.c */
#include <stdio.h>
#include <string.h>
#include <netinet/in.h>
#include "wrap.h"

#define MAXLINE 80
#define SERV_PORT 8000

int main(void)
{
struct sockaddr_in servaddr, cliaddr;
socklen_t cliaddr_len;
int sockfd;
char buf[MAXLINE];
char str[INET_ADDRSTRLEN];
int i, n;

sockfd = Socket(AF_INET, SOCK_DGRAM, 0);

bzero(&amp;servaddr, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
servaddr.sin_port = htons(SERV_PORT);
Bind(sockfd, (struct sockaddr *)&amp;servaddr, sizeof(servaddr));

printf("Accepting connections ...\n");
while (1) {
    cliaddr_len = sizeof(cliaddr);
    n = recvfrom(sockfd, buf, MAXLINE, 0, (struct sockaddr *)&amp;cliaddr, &amp;cliaddr_len);
    if (n == -1)
        perr_exit("recvfrom error");
    printf("received from %s at PORT %d\n",inet_ntop(AF_INET, &amp;cliaddr.sin_addr, str, sizeof(str)),ntohs(cliaddr.sin_port));
    for (i = 0; i &lt; n; i++)
        buf[i] = toupper(buf[i]);
    n = sendto(sockfd, buf, n, 0, (struct sockaddr *)&amp;cliaddr, sizeof(cliaddr));
    if (n == -1)
        perr_exit("sendto error");
}

}

/* client.c */
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <netinet/in.h>
#include "wrap.h"

#define MAXLINE 80
#define SERV_PORT 8000

int main(int argc, char *argv[])
{
struct sockaddr_in servaddr;
int sockfd, n;
char buf[MAXLINE];
char str[INET_ADDRSTRLEN];
socklen_t servaddr_len;
sockfd = Socket(AF_INET, SOCK_DGRAM, 0);

bzero(&amp;servaddr, sizeof(servaddr));
servaddr.sin_family = AF_INET;
inet_pton(AF_INET, "127.0.0.1", &amp;servaddr.sin_addr);
servaddr.sin_port = htons(SERV_PORT);
while (fgets(buf, MAXLINE, stdin) != NULL) {
    n = sendto(sockfd, buf, strlen(buf), 0, (struct sockaddr *)&amp;servaddr, sizeof(servaddr));
    if (n == -1)
        perr_exit("sendto error");

    n = recvfrom(sockfd, buf, MAXLINE, 0, NULL, 0);
    if (n == -1)
        perr_exit("recvfrom error");        Write(STDOUT_FILENO, buf, n);
}

Close(sockfd);
return 0;

}

由于UDP不需要维护连接,程序逻辑简单了很多,但是UDP协议是不可靠的,实际上有很多保证通讯可靠性的机制需要在应用层实现。

编译运行server,在两个终端里各开一个client与server交互,看看server是否具有并发服务的能力。用Ctrl+C关闭server,然后再运行server,看此时client还能否和server联系上。和前面TCP程序的运行结果相比较,体会无连接的含义。

4. UNIX Domain Socket IPC

4. UNIX Domain Socket IPC

socket API原本是为网络通讯设计的,但后来在socket的框架上发展出一种IPC机制,就是UNIX Domain Socket。虽然网络socket也可用于同一台主机的进程间通讯(通过loopback地址127.0.0.1),但是UNIX Domain Socket用于IPC更有效率:不需要经过网络协议栈,不需要打包拆包、计算校验和、维护序号和应答等,只是将应用层数据从一个进程拷贝到另一个进程。这是因为,IPC机制本质上是可靠的通讯,而网络协议是为不可靠的通讯设计的。UNIX Domain Socket也提供面向流和面向数据包两种API接口,类似于TCP和UDP,但是面向消息的UNIX Domain Socket也是可靠的,消息既不会丢失也不会顺序错乱。

UNIX Domain Socket是全双工的,API接口语义丰富,相比其它IPC机制有明显的优越性,目前已成为使用最广泛的IPC机制,比如X Window服务器和GUI程序之间就是通过UNIX Domain Socket通讯的。

使用UNIX Domain Socket的过程和网络socket十分相似,也要先调用socket()创建一个socket文件描述符,address family指定为AF_UNIX,type可以选择SOCK_DGRAM或SOCK_STREAM,protocol参数仍然指定为0即可。

UNIX Domain Socket与网络socket编程最明显的不同在于地址格式不同,用结构体sockaddr_un表示,网络编程的socket地址是IP地址加端口号,而UNIX Domain Socket的地址是一个socket类型的文件在文件系统中的路径,这个socket文件由bind()调用创建,如果调用bind()时该文件已存在,则bind()错误返回。

以下程序将UNIX Domain socket绑定到一个地址。

#include <stdlib.h>
#include <stdio.h>
#include <stddef.h>
#include <sys/socket.h>
#include <sys/un.h>

int main(void)
{
int fd, size;
struct sockaddr_un un;

memset(&amp;un, 0, sizeof(un));
un.sun_family = AF_UNIX;
strcpy(un.sun_path, "foo.socket");
if ((fd = socket(AF_UNIX, SOCK_STREAM, 0)) &lt; 0) {
    perror("socket error");
    exit(1);
}
size = offsetof(struct sockaddr_un, sun_path) + strlen(un.sun_path);
if (bind(fd, (struct sockaddr *)&amp;un, size) &lt; 0) {
    perror("bind error");
    exit(1);
}
printf("UNIX domain socket bound\n");
exit(0);

}

注意程序中的offsetof宏,它在stddef.h头文件中定义:

#define offsetof(TYPE, MEMBER) ((int)&((TYPE *)0)->MEMBER)

offsetof(struct sockaddr_un, sun_path)就是取sockaddr_un结构体的sun_path成员在结构体中的偏移,也就是从结构体的第几个字节开始是sun_path成员。想一想,这个宏是如何实现这一功能的?

该程序的运行结果如下。

$ ./a.out
UNIX domain socket bound
$ ls -l foo.socket
srwxrwxr-x 1 user 0 Aug 22 12:43 foo.socket
$ ./a.out
bind error: Address already in use
$ rm foo.socket
$ ./a.out
UNIX domain socket bound

以下是服务器的listen模块,与网络socket编程类似,在bind之后要listen,表示通过bind的地址(也就是socket文件)提供服务。

#include <stddef.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <errno.h>

#define QLEN 10

/*

  • Create a server endpoint of a connection.

  • Returns fd if all OK, <0 on error.
    */
    int serv_listen(const char *name)
    {
    int fd, len, err, rval;
    struct sockaddr_un un;

    /* create a UNIX domain stream socket /
    if ((fd = socket(AF_UNIX, SOCK_STREAM, 0)) < 0)
    return(-1);
    unlink(name); /
    in case it already exists */

    /* fill in socket address structure */
    memset(&un, 0, sizeof(un));
    un.sun_family = AF_UNIX;
    strcpy(un.sun_path, name);
    len = offsetof(struct sockaddr_un, sun_path) + strlen(name);

    /* bind the name to the descriptor */
    if (bind(fd, (struct sockaddr )&un, len) < 0) {
    rval = -2;
    goto errout;
    }
    if (listen(fd, QLEN) < 0) { /
    tell kernel we're a server */
    rval = -3;
    goto errout;
    }
    return(fd);

errout:
err = errno;
close(fd);
errno = err;
return(rval);
}

以下是服务器的accept模块,通过accept得到客户端地址也应该是一个socket文件,如果不是socket文件就返回错误码,如果是socket文件,在建立连接后这个文件就没有用了,调用unlink把它删掉,通过传出参数uidptr返回客户端程序的user id。

#include <stddef.h>
#include <sys/stat.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <errno.h>

int serv_accept(int listenfd, uid_t *uidptr)
{
int clifd, len, err, rval;
time_t staletime;
struct sockaddr_un un;
struct stat statbuf;

len = sizeof(un);
if ((clifd = accept(listenfd, (struct sockaddr *)&amp;un, &amp;len)) &lt; 0)
    return(-1);/* often errno=EINTR, if signal caught */

/* obtain the client's uid from its calling address */
len -= offsetof(struct sockaddr_un, sun_path); /* len of pathname */
un.sun_path[len] = 0; /* null terminate */

if (stat(un.sun_path, &amp;statbuf) &lt; 0) {
    rval = -2;
    goto errout;
}

if (S_ISSOCK(statbuf.st_mode) == 0) {
    rval = -3; /* not a socket */
    goto errout;
}

if (uidptr != NULL)
    *uidptr = statbuf.st_uid;   /* return uid of caller */
unlink(un.sun_path);   /* we're done with pathname now */
return(clifd);

errout:
err = errno;
close(clifd);
errno = err;
return(rval);
}

以下是客户端的connect模块,与网络socket编程不同的是,UNIX Domain Socket客户端一般要显式调用bind函数,而不依赖系统自动分配的地址。客户端bind一个自己指定的socket文件名的好处是,该文件名可以包含客户端的pid以便服务器区分不同的客户端。

#include <stdio.h>
#include <stddef.h>
#include <sys/stat.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <errno.h>

#define CLI_PATH "/var/tmp/" /* +5 for pid = 14 chars */

/*

  • Create a client endpoint and connect to a server.

  • Returns fd if all OK, <0 on error.
    */
    int cli_conn(const char *name)
    {
    int fd, len, err, rval;
    struct sockaddr_un un;

    /* create a UNIX domain stream socket */
    if ((fd = socket(AF_UNIX, SOCK_STREAM, 0)) < 0)
    return(-1);

    /* fill socket address structure with our address */
    memset(&un, 0, sizeof(un));
    un.sun_family = AF_UNIX;
    sprintf(un.sun_path, "%s%05d", CLI_PATH, getpid());
    len = offsetof(struct sockaddr_un, sun_path) + strlen(un.sun_path);

    unlink(un.sun_path); /* in case it already exists */
    if (bind(fd, (struct sockaddr *)&un, len) < 0) {
    rval = -2;
    goto errout;
    }

    /* fill socket address structure with server's address */
    memset(&un, 0, sizeof(un));
    un.sun_family = AF_UNIX;
    strcpy(un.sun_path, name);
    len = offsetof(struct sockaddr_un, sun_path) + strlen(name);
    if (connect(fd, (struct sockaddr *)&un, len) < 0) {
    rval = -4;
    goto errout;
    }
    return(fd);

errout:
err = errno;
close(fd);
errno = err;
return(rval);
}

下面是自己动手时间,请利用以上模块编写完整的客户端/服务器通讯的程序。

1. 预备知识

1. 预备知识

1.1. 网络字节序

我们已经知道,内存中的多字节数据相对于内存地址有大端和小端之分,磁盘文件中的多字节数据相对于文件中的偏移地址也有大端小端之分。网络数据流同样有大端小端之分,那么如何定义网络数据流的地址呢?发送主机通常将发送缓冲区中的数据按内存地址从低到高的顺序发出,接收主机把从网络上接到的字节依次保存在接收缓冲区中,也是按内存地址从低到高的顺序保存,因此,网络数据流的地址应这样规定:先发出的数据是低地址,后发出的数据是高地址。

TCP/IP协议规定,网络数据流应采用大端字节序,即低地址高字节。例如上一节的UDP段格式,地址0-1是16位的源端口号,如果这个端口号是1000(0x3e8),则地址0是0x03,地址1是0xe8,也就是先发0x03,再发0xe8,这16位在发送主机的缓冲区中也应该是低地址存0x03,高地址存0xe8。但是,如果发送主机是小端字节序的,这16位被解释成0xe803,而不是1000。因此,发送主机把1000填到发送缓冲区之前需要做字节序的转换。同样地,接收主机如果是小端字节序的,接到16位的源端口号也要做字节序的转换。如果主机是大端字节序的,发送和接收都不需要做转换。同理,32位的IP地址也要考虑网络字节序和主机字节序的问题。

为使网络程序具有可移植性,使同样的C代码在大端和小端计算机上编译后都能正常运行,可以调用以下库函数做网络字节序和主机字节序的转换。

#include <arpa/inet.h>

uint32_t htonl(uint32_t hostlong);
uint16_t htons(uint16_t hostshort);
uint32_t ntohl(uint32_t netlong);
uint16_t ntohs(uint16_t netshort);

这些函数名很好记,h表示host,n表示network,l表示32位长整数,s表示16位短整数。例如htonl表示将32位的长整数从主机字节序转换为网络字节序,例如将IP地址转换后准备发送。如果主机是小端字节序,这些函数将参数做相应的大小端转换然后返回,如果主机是大端字节序,这些函数不做转换,将参数原封不动地返回。

1.2. socket地址的数据类型及相关函数

socket API是一层抽象的网络编程接口,适用于各种底层网络协议,如IPv4、IPv6,以及后面要讲的UNIX Domain Socket。然而,各种网络协议的地址格式并不相同,如下图所示:

图 37.1. sockaddr数据结构


IPv4和IPv6的地址格式定义在netinet/in.h中,IPv4地址用sockaddr_in结构体表示,包括16位端口号和32位IP地址,IPv6地址用sockaddr_in6结构体表示,包括16位端口号、128位IP地址和一些控制字段。UNIX Domain Socket的地址格式定义在sys/un.h中,用sockaddr_un结构体表示。各种socket地址结构体的开头都是相同的,前16位表示整个结构体的长度(并不是所有UNIX的实现都有长度字段,如linux就没有),后16位表示地址类型。IPv4、IPv6和UNIX Domain Socket的地址类型分别定义为常数AF_INET、AF_INET6、AF_UNIX。这样,只要取得某种sockaddr结构体的首地址,不需要知道具体是哪种类型的sockaddr结构体,就可以根据地址类型字段确定结构体中的内容。因此,socket API可以接受各种类型的sockaddr结构体指针做参数,例如bind、accept、connect等函数,这些函数的参数应该设计成void *类型以便接受各种类型的指针,但是sock API的实现早于ANSI C标准化,那时还没有void *类型,因此这些函数的参数都用struct sockaddr 类型表示,在传递参数之前要强制类型转换一下,例如:

struct sockaddr_in servaddr;
/
initialize servaddr */
bind(listen_fd, (struct sockaddr *)&servaddr, sizeof(servaddr));

本节只介绍基于IPv4的socket网络编程,sockaddr_in中的成员struct in_addr sin_addr表示32位的IP地址。但是我们通常用点分十进制的字符串表示IP地址,以下函数可以在字符串表示和in_addr表示之间转换。

字符串转in_addr的函数:

#include <arpa/inet.h>

int inet_aton(const char *strptr, struct in_addr *addrptr);
in_addr_t inet_addr(const char *strptr);
int inet_pton(int family, const char *strptr, void *addrptr);

in_addr转字符串的函数:

char *inet_ntoa(struct in_addr inaddr);
const char *inet_ntop(int family, const void *addrptr, char *strptr, size_t len);

其中inet_pton和inet_ntop不仅可以转换IPv4的in_addr,还可以转换IPv6的in6_addr,因此函数接口是void *addrptr。

2. 基于TCP协议的网络程序

2. 基于TCP协议的网络程序

下图是基于TCP协议的客户端/服务器程序的一般流程:

图 37.2. TCP协议通讯流程


服务器调用socket()、bind()、listen()完成初始化后,调用accept()阻塞等待,处于监听端口的状态,客户端调用socket()初始化后,调用connect()发出SYN段并阻塞等待服务器应答,服务器应答一个SYN-ACK段,客户端收到后从connect()返回,同时应答一个ACK段,服务器收到后从accept()返回。

数据传输的过程:

建立连接后,TCP协议提供全双工的通信服务,但是一般的客户端/服务器程序的流程是由客户端主动发起请求,服务器被动处理请求,一问一答的方式。因此,服务器从accept()返回后立刻调用read(),读socket就像读管道一样,如果没有数据到达就阻塞等待,这时客户端调用write()发送请求给服务器,服务器收到后从read()返回,对客户端的请求进行处理,在此期间客户端调用read()阻塞等待服务器的应答,服务器调用write()将处理结果发回给客户端,再次调用read()阻塞等待下一条请求,客户端收到后从read()返回,发送下一条请求,如此循环下去。

如果客户端没有更多的请求了,就调用close()关闭连接,就像写端关闭的管道一样,服务器的read()返回0,这样服务器就知道客户端关闭了连接,也调用close()关闭连接。注意,任何一方调用close()后,连接的两个传输方向都关闭,不能再发送数据了。如果一方调用shutdown()则连接处于半关闭状态,仍可接收对方发来的数据。

在学习socket API时要注意应用程序和TCP协议层是如何交互的: *应用程序调用某个socket函数时TCP协议层完成什么动作,比如调用connect()会发出SYN段 *应用程序如何知道TCP协议层的状态变化,比如从某个阻塞的socket函数返回就表明TCP协议收到了某些段,再比如read()返回0就表明收到了FIN段

2.1. 最简单的TCP网络程序

下面通过最简单的客户端/服务器程序的实例来学习socket API。

server.c的作用是从客户端读字符,然后将每个字符转换为大写并回送给客户端。

/* server.c */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/socket.h>
#include <netinet/in.h>

#define MAXLINE 80
#define SERV_PORT 8000

int main(void)
{
struct sockaddr_in servaddr, cliaddr;
socklen_t cliaddr_len;
int listenfd, connfd;
char buf[MAXLINE];
char str[INET_ADDRSTRLEN];
int i, n;

listenfd = socket(AF_INET, SOCK_STREAM, 0);

bzero(&amp;servaddr, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
servaddr.sin_port = htons(SERV_PORT);
bind(listenfd, (struct sockaddr *)&amp;servaddr, sizeof(servaddr));

listen(listenfd, 20);

printf("Accepting connections ...\n");
while (1) {
    cliaddr_len = sizeof(cliaddr);
    connfd = accept(listenfd,   (struct sockaddr *)&amp;cliaddr, &amp;cliaddr_len);     n = read(connfd, buf, MAXLINE);
    printf("received from %s at PORT %d\n",inet_ntop(AF_INET, &amp;cliaddr.sin_addr, str, sizeof(str)),ntohs(cliaddr.sin_port));
    for (i = 0; i &lt; n; i++)
        buf[i] = toupper(buf[i]);
    write(connfd, buf, n);
    close(connfd);
}

}

下面介绍程序中用到的socket API,这些函数都在sys/socket.h中。

int socket(int family, int type, int protocol);

socket()打开一个网络通讯端口,如果成功的话,就像open()一样返回一个文件描述符,应用程序可以像读写文件一样用read/write在网络上收发数据,如果socket()调用出错则返回-1。对于IPv4,family参数指定为AF_INET。对于TCP协议,type参数指定为SOCK_STREAM,表示面向流的传输协议。如果是UDP协议,则type参数指定为SOCK_DGRAM,表示面向数据报的传输协议。protocol参数的介绍从略,指定为0即可。

int bind(int sockfd, const struct sockaddr *myaddr, socklen_t addrlen);

服务器程序所监听的网络地址和端口号通常是固定不变的,客户端程序得知服务器程序的地址和端口号后就可以向服务器发起连接,因此服务器需要调用bind绑定一个固定的网络地址和端口号。bind()成功返回0,失败返回-1。

bind()的作用是将参数sockfd和myaddr绑定在一起,使sockfd这个用于网络通讯的文件描述符监听myaddr所描述的地址和端口号。前面讲过,struct sockaddr *是一个通用指针类型,myaddr参数实际上可以接受多种协议的sockaddr结构体,而它们的长度各不相同,所以需要第三个参数addrlen指定结构体的长度。我们的程序中对myaddr参数是这样初始化的:

bzero(&servaddr, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
servaddr.sin_port = htons(SERV_PORT);

首先将整个结构体清零,然后设置地址类型为AF_INET,网络地址为INADDR_ANY,这个宏表示本地的任意IP地址,因为服务器可能有多个网卡,每个网卡也可能绑定多个IP地址,这样设置可以在所有的IP地址上监听,直到与某个客户端建立了连接时才确定下来到底用哪个IP地址,端口号为SERV_PORT,我们定义为8000。

int listen(int sockfd, int backlog);

典型的服务器程序可以同时服务于多个客户端,当有客户端发起连接时,服务器调用的accept()返回并接受这个连接,如果有大量的客户端发起连接而服务器来不及处理,尚未accept的客户端就处于连接等待状态,listen()声明sockfd处于监听状态,并且最多允许有backlog个客户端处于连接待状态,如果接收到更多的连接请求就忽略。listen()成功返回0,失败返回-1。

int accept(int sockfd, struct sockaddr *cliaddr, socklen_t *addrlen);

三方握手完成后,服务器调用accept()接受连接,如果服务器调用accept()时还没有客户端的连接请求,就阻塞等待直到有客户端连接上来。cliaddr是一个传出参数,accept()返回时传出客户端的地址和端口号。addrlen参数是一个传入传出参数(value-result argument),传入的是调用者提供的缓冲区cliaddr的长度以避免缓冲区溢出问题,传出的是客户端地址结构体的实际长度(有可能没有占满调用者提供的缓冲区)。如果给cliaddr参数传NULL,表示不关心客户端的地址。

我们的服务器程序结构是这样的:

while (1) {
cliaddr_len = sizeof(cliaddr);
connfd = accept(listenfd,(struct sockaddr )&cliaddr, &cliaddr_len);
n = read(connfd, buf, MAXLINE);
...
close(connfd);
}

整个是一个while死循环,每次循环处理一个客户端连接。由于cliaddr_len是传入传出参数,每次调用accept()之前应该重新赋初值。accept()的参数listenfd是先前的监听文件描述符,而accept()的返回值是另外一个文件描述符connfd,之后与客户端之间就通过这个connfd通讯,最后关闭connfd断开连接,而不关闭listenfd,再次回到循环开头listenfd仍然用作accept的参数。accept()成功返回一个文件描述符,出错返回-1。

client.c的作用是从命令行参数中获得一个字符串发给服务器,然后接收服务器返回的字符串并打印。

/ client.c */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/socket.h>
#include <netinet/in.h>

#define MAXLINE 80
#define SERV_PORT 8000

int main(int argc, char *argv[])
{
struct sockaddr_in servaddr;
char buf[MAXLINE];
int sockfd, n;
char *str;
if (argc != 2) {
fputs("usage: ./client message\n", stderr);
exit(1);
}
str = argv[1];
sockfd = socket(AF_INET, SOCK_STREAM, 0);

bzero(&amp;servaddr, sizeof(servaddr));
servaddr.sin_family = AF_INET;
inet_pton(AF_INET, "127.0.0.1", &amp;servaddr.sin_addr);
servaddr.sin_port = htons(SERV_PORT);
connect(sockfd, (struct sockaddr *)&amp;servaddr, sizeof(servaddr));

write(sockfd, str, strlen(str));

n = read(sockfd, buf, MAXLINE);
printf("Response from server:\n");
write(STDOUT_FILENO, buf, n);

close(sockfd);
return 0;

}

由于客户端不需要固定的端口号,因此不必调用bind(),客户端的端口号由内核自动分配。注意,客户端不是不允许调用bind(),只是没有必要调用bind()固定一个端口号,服务器也不是必须调用bind(),但如果服务器不调用bind(),内核会自动给服务器分配监听端口,每次启动服务器时端口号都不一样,客户端要连接服务器就会遇到麻烦。

int connect(int sockfd, const struct sockaddr servaddr, socklen_t addrlen);

客户端需要调用connect()连接服务器,connect和bind的参数形式一致,区别在于bind的参数是自己的地址,而connect的参数是对方的地址。connect()成功返回0,出错返回-1。

先编译运行服务器:

$ ./server
Accepting connections ...

然后在另一个终端里用netstat命令查看:

$ netstat -apn|grep 8000
tcp 0 0 0.0.0.0:8000 0.0.0.0:
LISTEN8148/server

可以看到server程序监听8000端口,IP地址还没确定下来。现在编译运行客户端:

$ ./client abcd
Response from server:
ABCD

回到server所在的终端,看看server的输出:

$ ./server
Accepting connections ...
received from 127.0.0.1 at PORT 59757

可见客户端的端口号是自动分配的。现在把客户端所连接的服务器IP改为其它主机的IP,试试两台主机的通讯。

再做一个小实验,在客户端的connect()代码之后插一个while(1);死循环,使客户端和服务器都处于连接中的状态,用netstat命令查看:

$ ./server &
[1] 8343
$ Accepting connections ...
./client abcd &
[2] 8344
$ netstat -apn|grep 8000
tcp 0 0 0.0.0.0:8000 0.0.0.0:LISTEN8343/servertcp 0 0 127.0.0.1:44406 127.0.0.1:8000ESTABLISHED8344/clienttcp 0 0 127.0.0.1:8000127.0.0.1:44406 ESTABLISHED8343/server

应用程序中的一个socket文件描述符对应一个socket pair,也就是源地址:源端口号和目的地址:目的端口号,也对应一个TCP连接。

表 37.1. client和server的socket状态

socket文件描述符源地址:源端口号目的地址:目的端口号状态
server.c中的listenfd0.0.0.0:80000.0.0.0:LISTEN
server.c中的connfd127.0.0.1:8000127.0.0.1:44406ESTABLISHED
client.c中的sockfd127.0.0.1:44406127.0.0.1:8000ESTABLISHED

2.2. 错误处理与读写控制

上面的例子不仅功能简单,而且简单到几乎没有什么错误处理,我们知道,系统调用不能保证每次都成功,必须进行出错处理,这样一方面可以保证程序逻辑正常,另一方面可以迅速得到故障信息。

为使错误处理的代码不影响主程序的可读性,我们把与socket相关的一些系统函数加上错误处理代码包装成新的函数,做成一个模块wrap.c:

#include <stdlib.h>
#include <errno.h>
#include <sys/socket.h>

void perr_exit(const char *s)
{
perror(s);
exit(1);
}

int Accept(int fd, struct sockaddr *sa, socklen_t *salenptr)
{
int n;

again:
if ( (n = accept(fd, sa, salenptr)) < 0) {
if ((errno == ECONNABORTED) || (errno == EINTR))
goto again;
else
perr_exit("accept error");
}
return n;
}

void Bind(int fd, const struct sockaddr *sa, socklen_t salen)
{
if (bind(fd, sa, salen) < 0)
perr_exit("bind error");
}

void Connect(int fd, const struct sockaddr *sa, socklen_t salen)
{
if (connect(fd, sa, salen) < 0)
perr_exit("connect error");
}

void Listen(int fd, int backlog)
{
if (listen(fd, backlog) < 0)
perr_exit("listen error");
}

int Socket(int family, int type, int protocol)
{
int n;

if ( (n = socket(family, type, protocol)) &lt; 0)
    perr_exit("socket error");
return n;

}

ssize_t Read(int fd, void *ptr, size_t nbytes)
{
ssize_t n;

again:
if ( (n = read(fd, ptr, nbytes)) == -1) {
if (errno == EINTR)
goto again;
else
return -1;
}
return n;
}

ssize_t Write(int fd, const void *ptr, size_t nbytes)
{
ssize_t n;

again:
if ( (n = write(fd, ptr, nbytes)) == -1) {
if (errno == EINTR)
goto again;
else
return -1;
}
return n;
}

void Close(int fd)
{
if (close(fd) == -1)
perr_exit("close error");
}

慢系统调用accept、read和write被信号中断时应该重试。connect虽然也会阻塞,但是被信号中断时不能立刻重试。对于accept,如果errno是ECONNABORTED,也应该重试。详细解释见参考资料。

TCP协议是面向流的,read和write调用的返回值往往小于参数指定的字节数。对于read调用,如果接收缓冲区中有20字节,请求读100个字节,就会返回20。对于write调用,如果请求写100个字节,而发送缓冲区中只有20个字节的空闲位置,那么write会阻塞,直到把100个字节全部交给发送缓冲区才返回,但如果socket文件描述符有O_NONBLOCK标志,则write不阻塞,直接返回20。为避免这些情况干扰主程序的逻辑,确保读写我们所请求的字节数,我们实现了两个包装函数readn和writen,也放在wrap.c中:

ssize_t Readn(int fd, void *vptr, size_t n)
{
size_t nleft;
ssize_t nread;
char *ptr;

ptr = vptr;
nleft = n;
while (nleft &gt; 0) {
    if ( (nread = read(fd, ptr, nleft)) &lt; 0) {
        if (errno == EINTR)nread = 0;
        elsereturn -1;
    } else if (nread == 0)
        break;

    nleft -= nread;
    ptr += nread;
}
return n - nleft;

}

ssize_t Writen(int fd, const void *vptr, size_t n)
{
size_t nleft;
ssize_t nwritten;
const char *ptr;

ptr = vptr;
nleft = n;
while (nleft &gt; 0) {
    if ( (nwritten = write(fd, ptr, nleft)) &lt;= 0) {
        if (nwritten &lt; 0 &amp;&amp; errno == EINTR)nwritten = 0;
        elsereturn -1;
    }

    nleft -= nwritten;
    ptr += nwritten;
}
return n;

}

如果应用层协议的各字段长度固定,用readn来读是非常方便的。例如设计一种客户端上传文件的协议,规定前12字节表示文件名,超过12字节的文件名截断,不足12字节的文件名用'\0'补齐,从第13字节开始是文件内容,上传完所有文件内容后关闭连接,服务器可以先调用readn读12个字节,根据文件名创建文件,然后在一个循环中调用read读文件内容并存盘,循环结束的条件是read返回0。

字段长度固定的协议往往不够灵活,难以适应新的变化。比如,以前DOS的文件名是8字节主文件名加“.”加3字节扩展名,不超过12字节,但是现代操作系统的文件名可以长得多,12字节就不够用了。那么制定一个新版本的协议规定文件名字段为256字节怎么样?这样又造成很大的浪费,因为大多数文件名都很短,需要用大量的'\0'补齐256字节,而且新版本的协议和老版本的程序无法兼容,如果已经有很多人在用老版本的程序了,会造成遵循新协议的程序与老版本程序的互操作性(Interoperability)问题。如果新版本的协议要添加新的字段,比如规定前12字节是文件名,从13到16字节是文件类型说明,从第17字节开始才是文件内容,同样会造成和老版本的程序无法兼容的问题。

现在重新看看上一节的TFTP协议是如何避免上述问题的:TFTP协议的各字段是可变长的,以'\0'为分隔符,文件名可以任意长,再看blksize等几个选项字段,TFTP协议并没有规定从第m字节到第n字节是blksize的值,而是把选项的描述信息“blksize”与它的值“512”一起做成一个可变长的字段,这样,以后添加新的选项仍然可以和老版本的程序兼容(老版本的程序只要忽略不认识的选项就行了)。

因此,常见的应用层协议都是带有可变长字段的,字段之间的分隔符用换行的比用'\0'的更常见,例如本节后面要介绍的HTTP协议。可变长字段的协议用readn来读就很不方便了,为此我们实现一个类似于fgets的readline函数,也放在wrap.c中:

static ssize_t my_read(int fd, char *ptr)
{
static int read_cnt;
static char *read_ptr;
static char read_buf[100];

if (read_cnt &lt;= 0) {
again:
    if ( (read_cnt = read(fd, read_buf, sizeof(read_buf))) &lt; 0) {
        if (errno == EINTR)goto again;
        return -1;
    } else if (read_cnt == 0)
        return 0;
    read_ptr = read_buf;
}
read_cnt--;
*ptr = *read_ptr++;
return 1;

}

ssize_t Readline(int fd, void *vptr, size_t maxlen)
{
ssize_t n, rc;
char c, *ptr;

ptr = vptr;
for (n = 1; n &lt; maxlen; n++) {
    if ( (rc = my_read(fd, &amp;c)) == 1) {
        *ptr++ = c;
        if (c  == '\n')break;
    } else if (rc == 0) {
        *ptr = 0;
        return n - 1;
    } else
        return -1;
}
*ptr  = 0;
return n;

}

习题

1、请读者自己写出wrap.c的头文件wrap.h,后面的网络程序代码都要用到这个头文件。

2、修改server.c和client.c,添加错误处理。

2.3. 把client改为交互式输入

目前实现的client每次运行只能从命令行读取一个字符串发给服务器,再从服务器收回来,现在我们把它改成交互式的,不断从终端接受用户输入并和server交互。

/* client.c */
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <netinet/in.h>
#include "wrap.h"

#define MAXLINE 80
#define SERV_PORT 8000

int main(int argc, char *argv[])
{
struct sockaddr_in servaddr;
char buf[MAXLINE];
int sockfd, n;
sockfd = Socket(AF_INET, SOCK_STREAM, 0);

bzero(&amp;servaddr, sizeof(servaddr));
servaddr.sin_family = AF_INET;
inet_pton(AF_INET, "127.0.0.1", &amp;servaddr.sin_addr);
servaddr.sin_port = htons(SERV_PORT);
Connect(sockfd, (struct sockaddr *)&amp;servaddr, sizeof(servaddr));

while (fgets(buf, MAXLINE, stdin) != NULL) {
    Write(sockfd, buf, strlen(buf));
    n = Read(sockfd, buf, MAXLINE);
    if (n == 0)
        printf("the other side has been closed.\n");
    else
        Write(STDOUT_FILENO, buf, n);
}

Close(sockfd);
return 0;

}

编译并运行server和client,看看是否达到了你预想的结果。

$ ./client
haha1
HAHA1
haha2
the other side has been closed.
haha3
$

这时server仍在运行,但是client的运行结果并不正确。原因是什么呢?仔细查看server.c可以发现,server对每个请求只处理一次,应答后就关闭连接,client不能继续使用这个连接发送数据。但是client下次循环时又调用write发数据给server,write调用只负责把数据交给TCP发送缓冲区就可以成功返回了,所以不会出错,而server收到数据后应答一个RST段,client收到RST段后无法立刻通知应用层,只把这个状态保存在TCP协议层。client下次循环又调用write发数据给server,由于TCP协议层已经处于RST状态了,因此不会将数据发出,而是发一个SIGPIPE信号给应用层,SIGPIPE信号的缺省处理动作是终止程序,所以看到上面的现象。

为了避免client异常退出,上面的代码应该在判断对方关闭了连接后break出循环,而不是继续write。另外,有时候代码中需要连续多次调用write,可能还来不及调用read得知对方已关闭了连接就被SIGPIPE信号终止掉了,这就需要在初始化时调用sigaction处理SIGPIPE信号,如果SIGPIPE信号没有导致进程异常退出,write返回-1并且errno为EPIPE。

另外,我们需要修改server,使它可以多次处理同一客户端的请求。

/* server.c */
#include <stdio.h>
#include <string.h>
#include <netinet/in.h>
#include "wrap.h"

#define MAXLINE 80
#define SERV_PORT 8000

int main(void)
{
struct sockaddr_in servaddr, cliaddr;
socklen_t cliaddr_len;
int listenfd, connfd;
char buf[MAXLINE];
char str[INET_ADDRSTRLEN];
int i, n;

listenfd = Socket(AF_INET, SOCK_STREAM, 0);

bzero(&amp;servaddr, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
servaddr.sin_port = htons(SERV_PORT);
Bind(listenfd, (struct sockaddr *)&amp;servaddr, sizeof(servaddr));

Listen(listenfd, 20);

printf("Accepting connections ...\n");
while (1) {
    cliaddr_len = sizeof(cliaddr);
    connfd = Accept(listenfd,   (struct sockaddr *)&amp;cliaddr, &amp;cliaddr_len);
    while (1) {
        n = Read(connfd, buf, MAXLINE);
        if (n == 0) {printf("the other side has been closed.\n");break;
        }
        printf("received from %s at PORT %d\n", inet_ntop(AF_INET, &amp;cliaddr.sin_addr, str, sizeof(str)), ntohs(cliaddr.sin_port));
        for (i = 0; i &lt; n; i++)buf[i] = toupper(buf[i]);
        Write(connfd, buf, n);
    }
    Close(connfd);
}

}

经过上面的修改后,客户端和服务器可以进行多次交互了。我们知道,服务器通常是要同时服务多个客户端的,运行上面的server和client之后,再开一个终端运行client试试,新的client能得到服务吗?想想为什么。

2.4. 使用fork并发处理多个client的请求

怎么解决这个问题?网络服务器通常用fork来同时服务多个客户端,父进程专门负责监听端口,每次accept一个新的客户端连接就fork出一个子进程专门服务这个客户端。但是子进程退出时会产生僵尸进程,父进程要注意处理SIGCHLD信号和调用wait清理僵尸进程。

以下给出代码框架,完整的代码请读者自己完成。

listenfd = socket(...);
bind(listenfd, ...);
listen(listenfd, ...);
while (1) {
connfd = accept(listenfd, ...);
n = fork();
if (n == -1) {
perror("call to fork");
exit(1);
} else if (n == 0) {
close(listenfd);
while (1) {
read(connfd, ...);
...
write(connfd, ...);
}
close(connfd);
exit(0);
} else
close(connfd);
}

2.5. setsockopt

现在做一个测试,首先启动server,然后启动client,然后用Ctrl-C使server终止,这时马上再运行server,结果是:

$ ./server
bind error: Address already in use

这是因为,虽然server的应用程序终止了,但TCP协议层的连接并没有完全断开,因此不能再次监听同样的server端口。我们用netstat命令查看一下:

$ netstat -apn |grep 8000
tcp 1 0 127.0.0.1:33498 127.0.0.1:8000CLOSE_WAIT 10830/clienttcp 0 0 127.0.0.1:8000127.0.0.1:33498 FIN_WAIT2 -

server终止时,socket描述符会自动关闭并发FIN段给client,client收到FIN后处于CLOSE_WAIT状态,但是client并没有终止,也没有关闭socket描述符,因此不会发FIN给server,因此server的TCP连接处于FIN_WAIT2状态。

现在用Ctrl-C把client也终止掉,再观察现象:

$ netstat -apn |grep 8000
tcp 0 0 127.0.0.1:8000127.0.0.1:44685 TIME_WAIT -
$ ./server
bind error: Address already in use

client终止时自动关闭socket描述符,server的TCP连接收到client发的FIN段后处于TIME_WAIT状态。TCP协议规定,主动关闭连接的一方要处于TIME_WAIT状态,等待两个MSL(maximum segment lifetime)的时间后才能回到CLOSED状态,因为我们先Ctrl-C终止了server,所以server是主动关闭连接的一方,在TIME_WAIT期间仍然不能再次监听同样的server端口。MSL在RFC1122中规定为两分钟,但是各操作系统的实现不同,在linux上一般经过半分钟后就可以再次启动server了。至于为什么要规定TIME_WAIT的时间请读者参考UNP 2.7节。

在server的TCP连接没有完全断开之前不允许重新监听是不合理的,因为,TCP连接没有完全断开指的是connfd(127.0.0.1:8000)没有完全断开,而我们重新监听的是listenfd(0.0.0.0:8000),虽然是占用同一个端口,但IP地址不同,connfd对应的是与某个客户端通讯的一个具体的IP地址,而listenfd对应的是wildcard address。解决这个问题的方法是使用setsockopt()设置socket描述符的选项SO_REUSEADDR为1,表示允许创建端口号相同但IP地址不同的多个socket描述符。在server代码的socket()和bind()调用之间插入如下代码:

int opt = 1;
setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt));

有关setsockopt可以设置的其它选项请参考UNP第7章。

2.6. 使用select

select是网络程序中很常用的一个系统调用,它可以同时监听多个阻塞的文件描述符(例如多个网络连接),哪个有数据到达就处理哪个,这样,不需要fork和多进程就可以实现并发服务的server。

/* server.c */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <netinet/in.h>
#include "wrap.h"

#define MAXLINE 80
#define SERV_PORT 8000

int main(int argc, char **argv)
{
int i, maxi, maxfd, listenfd, connfd, sockfd;
int nready, client[FD_SETSIZE];
ssize_t n;
fd_set rset, allset;
char buf[MAXLINE];
char str[INET_ADDRSTRLEN];
socklen_t cliaddr_len;
struct sockaddr_in cliaddr, servaddr;

listenfd = Socket(AF_INET, SOCK_STREAM, 0);

bzero(&amp;servaddr, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
servaddr.sin_port   = htons(SERV_PORT);

Bind(listenfd, (struct sockaddr *)&amp;servaddr, sizeof(servaddr));

Listen(listenfd, 20);

maxfd = listenfd;       /* initialize */
maxi = -1;          /* index into client[] array */
for (i = 0; i &lt; FD_SETSIZE; i++)
    client[i] = -1; /* -1 indicates available entry */
FD_ZERO(&amp;allset);
FD_SET(listenfd, &amp;allset);

for ( ; ; ) {
    rset = allset;  /* structure assignment */
    nready = select(maxfd+1, &amp;rset, NULL, NULL, NULL);
    if (nready &lt; 0)
        perr_exit("select error");

    if (FD_ISSET(listenfd, &amp;rset)) { /* new client connection */
        cliaddr_len = sizeof(cliaddr);
        connfd = Accept(listenfd, (struct sockaddr *)&amp;cliaddr, &amp;cliaddr_len);printf("received from %s at PORT %d\n", inet_ntop(AF_INET, &amp;cliaddr.sin_addr, str, sizeof(str)), ntohs(cliaddr.sin_port));for (i = 0; i &lt; FD_SETSIZE; i++)if (client[i] &lt; 0) {   client[i] = connfd; /* save descriptor */   break;}
        if (i == FD_SETSIZE) {fputs("too many clients\n", stderr);exit(1);
        }FD_SET(connfd, &amp;allset);   /* add new descriptor to set */
        if (connfd &gt; maxfd)maxfd = connfd; /* for select */
        if (i &gt; maxi)maxi = i;   /* max index in client[] array */if (--nready == 0)continue;    /* no more readable descriptors */
    }

    for (i = 0; i &lt;= maxi; i++) {    /* check all clients for data */
        if ( (sockfd = client[i]) &lt; 0)continue;
        if (FD_ISSET(sockfd, &amp;rset)) {if ( (n = Read(sockfd, buf, MAXLINE)) == 0) { /* connection closed by client */   Close(sockfd);  FD_CLR(sockfd, &amp;allset);    client[i] = -1;} else { int j;  for (j = 0; j &lt; n; j++)      buf[j] = toupper(buf[j]);   Write(sockfd, buf, n);} if (--nready == 0)  break;  /* no more readable descriptors */
        }
    }
}

}

7. TCP协议

7. TCP协议

7.1. 段格式

TCP的段格式如下图所示(该图出自[TCPIP])。

图 36.12. TCP段格式


和UDP协议一样也有源端口号和目的端口号,通讯的双方由IP地址和端口号标识。32位序号、32位确认序号、窗口大小稍后详细解释。4位首部长度和IP协议头类似,表示TCP协议头的长度,以4字节为单位,因此TCP协议头最长可以是4x15=60字节,如果没有选项字段,TCP协议头最短20字节。URG、ACK、PSH、RST、SYN、FIN是六个控制位,本节稍后将解释SYN、ACK、FIN、RST四个位,其它位的解释从略。16位检验和将TCP协议头和数据都计算在内。紧急指针和各种选项的解释从略。

7.2. 通讯时序

下图是一次TCP通讯的时序图。

图 36.13. TCP连接建立断开


在这个例子中,首先客户端主动发起连接、发送请求,然后服务器端响应请求,然后客户端主动关闭连接。两条竖线表示通讯的两端,从上到下表示时间的先后顺序,注意,数据从一端传到网络的另一端也需要时间,所以图中的箭头都是斜的。双方发送的段按时间顺序编号为1-10,各段中的主要信息在箭头上标出,例如段2的箭头上标着SYN, 8000(0), ACK 1001, <mss 1024>,表示该段中的SYN位置1,32位序号是8000,该段不携带有效载荷(数据字节数为0),ACK位置1,32位确认序号是1001,带有一个mss选项值为1024。

建立连接的过程:

  • 客户端发出段1,SYN位表示连接请求。序号是1000,这个序号在网络通讯中用作临时的地址,每发一个数据字节,这个序号要加1,这样在接收端可以根据序号排出数据包的正确顺序,也可以发现丢包的情况,另外,规定SYN位和FIN位也要占一个序号,这次虽然没发数据,但是由于发了SYN位,因此下次再发送应该用序号1001。mss表示最大段尺寸,如果一个段太大,封装成帧后超过了链路层的最大帧长度,就必须在IP层分片,为了避免这种情况,客户端声明自己的最大段尺寸,建议服务器端发来的段不要超过这个长度。

  • 服务器发出段2,也带有SYN位,同时置ACK位表示确认,确认序号是1001,表示“我接收到序号1000及其以前所有的段,请你下次发送序号为1001的段”,也就是应答了客户端的连接请求,同时也给客户端发出一个连接请求,同时声明最大尺寸为1024。

  • 客户端发出段3,对服务器的连接请求进行应答,确认序号是8001。

  • 在这个过程中,客户端和服务器分别给对方发了连接请求,也应答了对方的连接请求,其中服务器的请求和应答在一个段中发出,因此一共有三个段用于建立连接,称为'''三方握手(three-way-handshake)'''。在建立连接的同时,双方协商了一些信息,例如双方发送序号的初始值、最大段尺寸等。

    在TCP通讯中,如果一方收到另一方发来的段,读出其中的目的端口号,发现本机并没有任何进程使用这个端口,就会应答一个包含RST位的段给另一方。例如,服务器并没有任何进程使用8080端口,我们却用telnet客户端去连接它,服务器收到客户端发来的SYN段就会应答一个RST段,客户端的telnet程序收到RST段后报告错误Connection refused:

    $ telnet 192.168.0.200 8080
    Trying 192.168.0.200...
    telnet: Unable to connect to remote host: Connection refused

    数据传输的过程:

  • 客户端发出段4,包含从序号1001开始的20个字节数据。

  • 服务器发出段5,确认序号为1021,对序号为1001-1020的数据表示确认收到,同时请求发送序号1021开始的数据,服务器在应答的同时也向客户端发送从序号8001开始的10个字节数据,这称为piggyback。

  • 客户端发出段6,对服务器发来的序号为8001-8010的数据表示确认收到,请求发送序号8011开始的数据。

  • 在数据传输过程中,ACK和确认序号是非常重要的,应用程序交给TCP协议发送的数据会暂存在TCP层的发送缓冲区中,发出数据包给对方之后,只有收到对方应答的ACK段才知道该数据包确实发到了对方,可以从发送缓冲区中释放掉了,如果因为网络故障丢失了数据包或者丢失了对方发回的ACK段,经过等待超时后TCP协议自动将发送缓冲区中的数据包重发。

    这个例子只描述了最简单的一问一答的情景,实际的TCP数据传输过程可以收发很多数据段,虽然典型的情景是客户端主动请求服务器被动应答,但也不是必须如此,事实上TCP协议为应用层提供了全双工(full-duplex)的服务,双方都可以主动甚至同时给对方发送数据。

    如果通讯过程只能采用一问一答的方式,收和发两个方向不能同时传输,在同一时间只允许一个方向的数据传输,则称为'''半双工(half-duplex)''',假设某种面向连接的协议是半双工的,则只需要一套序号就够了,不需要通讯双方各自维护一套序号,想一想为什么。

    关闭连接的过程:

  • 客户端发出段7,FIN位表示关闭连接的请求。

  • 服务器发出段8,应答客户端的关闭连接请求。

  • 服务器发出段9,其中也包含FIN位,向客户端发送关闭连接请求。

  • 客户端发出段10,应答服务器的关闭连接请求。

  • 建立连接的过程是三方握手,而关闭连接通常需要4个段,服务器的应答和关闭连接请求通常不合并在一个段中,因为有连接半关闭的情况,这种情况下客户端关闭连接之后就不能再发送数据给服务器了,但是服务器还可以发送数据给客户端,直到服务器也关闭连接为止,稍后会看到这样的例子。

    7.3. 流量控制

    介绍UDP时我们描述了这样的问题:如果发送端发送的速度较快,接收端接收到数据后处理的速度较慢,而接收缓冲区的大小是固定的,就会丢失数据。TCP协议通过'''滑动窗口(Sliding Window)'''机制解决这一问题。看下图的通讯过程。

    图 36.14. 滑动窗口


  • 发送端发起连接,声明最大段尺寸是1460,初始序号是0,窗口大小是4K,表示“我的接收缓冲区还有4K字节空闲,你发的数据不要超过4K”。接收端应答连接请求,声明最大段尺寸是1024,初始序号是8000,窗口大小是6K。发送端应答,三方握手结束。

  • 发送端发出段4-9,每个段带1K的数据,发送端根据窗口大小知道接收端的缓冲区满了,因此停止发送数据。

  • 接收端的应用程序提走2K数据,接收缓冲区又有了2K空闲,接收端发出段10,在应答已收到6K数据的同时声明窗口大小为2K。

  • 接收端的应用程序又提走2K数据,接收缓冲区有4K空闲,接收端发出段11,重新声明窗口大小为4K。

  • 发送端发出段12-13,每个段带2K数据,段13同时还包含FIN位。

  • 接收端应答接收到的2K数据(6145-8192),再加上FIN位占一个序号8193,因此应答序号是8194,连接处于半关闭状态,接收端同时声明窗口大小为2K。

  • 接收端的应用程序提走2K数据,接收端重新声明窗口大小为4K。

  • 接收端的应用程序提走剩下的2K数据,接收缓冲区全空,接收端重新声明窗口大小为6K。

  • 接收端的应用程序在提走全部数据后,决定关闭连接,发出段17包含FIN位,发送端应答,连接完全关闭。

  • 上图在接收端用小方块表示1K数据,实心的小方块表示已接收到的数据,虚线框表示接收缓冲区,因此套在虚线框中的空心小方块表示窗口大小,从图中可以看出,随着应用程序提走数据,虚线框是向右滑动的,因此称为滑动窗口。

    从这个例子还可以看出,发送端是一K一K地发送数据,而接收端的应用程序可以两K两K地提走数据,当然也有可能一次提走3K或6K数据,或者一次只提走几个字节的数据,也就是说,应用程序所看到的数据是一个整体,或说是一个流(stream),在底层通讯中这些数据可能被拆成很多数据包来发送,但是一个数据包有多少字节对应用程序是不可见的,因此TCP协议是面向流的协议。而UDP是面向消息的协议,每个UDP段都是一条消息,应用程序必须以消息为单位提取数据,不能一次提取任意字节的数据,这一点和TCP是很不同的。